
Group 10

Page 1 of 29

Table of Content

1. Task A

 1.1 Exploratory Data Analysis ………………………………………………………………. 2

1.2 Gradient Descent ………………………………………………………………………… 4

2. Task B

 2.1 Introduction ……………………………………………………………………………….. 5

 2.2 Data Processing and Exploratory Data Analysis …………………………………………. 5

 2.3 Feature Engineering ………………………………………………………………………. 7

 2.4 Methodology ……………………………………………………………………………… 8

 2.5 Model Validation and Evaluation …………………………………………………………10

 2.6 Conclusion …………………………………………………………………………………12

3. Task C

 3.1 Data Processing ………………………………………………………………………….. 13

 3.2 Build a 3-Layer Neural Network ………………………………………………………… 13

 3.3 Neural Network Diagnosis ………………………………………………………………. 16

 3.4 Optimisation ……………………………………………………………………………... 18

4. Reference …………………………………………………………………………………… 19

5. Appendix

 Appendix A (Task A) ……………………………………………………………………….. 20

 Appendix B (Task B) ……………………………………………………………………….. 21

 Appendix C (Task C) ……………………………………………………………………….. 26

Selina's PC
铅笔

Selina's PC
铅笔

Page 2 of 29

1. TASK A

1.1 Exploratory Data Analysis

Overall, the provided dataset contains 14 attributes. One of them is the response variable, the median

value of the owner-occupied homes in Boston, and the remaining 1 binary and 12 continuous are

predictors representing various environment and property information of the houses such as the

crime rate by town.

1.1.1 Response Variable Visualization

Figure 1: Distribution of response variable

Histogram is used to visualize the distribution of the dependent variable, the median house price

(Figure 1). Majority of median prices of the houses are around $25,000. And it can be seen that the

variable is right skewed, which means there are more houses with above-average prices among all

samples.

1.1.2 Predictors Visualization

1.1.2.1 Binary Variable

The conditional distribution plot is used to shown the relationship between the median value of home

price and the binary variable, the Charles river dummy variable. It indicates that the two distribution

plots of the dependent variable approximately converge with each other, given the variable ‘chas’

equals 1 or 0, respectively. That shows that the value of the dummy variable which represents

whether the house tract bounds the Charles river does not affect the house price significantly (Figure

2).

Page 3 of 29

Figure 2: Conditional distribution of response variable

1.1.2.2 Continuous Variable

Above all, the correlations with the response variable are considered for the remaining 12 continuous

variables. The 3 variables with the largest absolute correlation coefficient are ‘lstat’, ‘rm’, ‘ptratio’,

which represent the proportion of lower status population of the town, the average room number and

the pupil-teacher ratio by town. The result aligns with commence knowledge that the dwelling price

always varies with the social class of the suburb, the size of the house and education resources

significantly.

The correlation between all predictors with the response variable is visualized with the scatter plot

with the linear regression line (Figure 1 in Appendix A). And the correlation between all the

attributes including predictors and the dependent variable is shown in the heatmap (Figure 3).

Figure 3: Heatmap

Page 4 of 29

To build an effective linear regression model to predict the house price, features with high

correlations with price should be considered. So that the 3 most important features should be ‘lstat’,

‘rm’, ‘ptratio’.

1.2 Gradient Descent

1.2.1 Data Processing and Standardization

According to the requirement, three features including ‘rm’, ’dis’, ’tax’ denoting the room number,

weighted distances to five Boston employment centers and the full-value property-tax rate per

10,000, respectively, are chosen to do the linear regression. It is shown that these three features are

different from each other not only in the data type but also in the data size. For instance, the mean

values of ‘rm’ and ‘tax’ are 6.2846 and 408.2372. To improve the predictability of the linear

regression, these three features are linearly transformed with standardization to make their average

values go to 0 and standard variation become 1.

1.2.2 Methodology

The gradient descent method is to update the estimates of the parameters of the linear regression

following the below principles until the loss function 𝐿(𝛽) become as close as possible to its local

minimum value.

𝐿(𝛽) =
1

2𝑁
∑(𝑋𝛽 − 𝑦)𝑇(𝑋𝛽 − 𝑦)

𝑁

𝑛=1

𝛽0 = [0 0 0 0]𝑇

𝛽𝑡+1 = 𝛽𝑡 − 𝜆
𝜕 𝐿(𝛽𝑡)

𝜕 𝛽𝑡
 𝑡: 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

In this case, the stopping criteria of the iteration is set to be that the iteration number reaches 10,000

or the change of loss function after a step is less than 0.00001 (Code 1 in Appendix A).

1.2.3 Optimal Learning Rate Selection

The learning rate 𝜆 controls the spend of the gradient descent in a reasonable range. If the learning

rate is too large, the loss function could never reach its local minimum and if the learning rate is too

small, the iteration process would be ineffective and need more iterations to find the local minimum

value of loss function. The best learning rate to be select should be the one that minimizes the loss

function, which means the linear regression prediction with the corresponding estimated parameter

should have the least MSE.

The cross validation with 5 folds method is used to tune the optimal learning rate. The dataset is split

into 5 folds. Each time 4 of them is used to train the linear regression and the remaining validation

set is predicted to get the MSE score. For each candidate learning rate, the average MSE score of the

five validation folds in the 5 iterations, respectively, is calculated and compared with each other. The

learning rate with the least MSE score is selected to be the optimal learning rate. In this case, the

select learning rate is 0.0010. The estimated parameter of the linear regression model is

[0 0.6137 −0.0417 −0.3115]𝑇, the corresponding MSE is 0.4381. Consider the mean value of

the response variable is 22.5328, the result of the learning rate is reasonable.

Page 5 of 29

2. TASK B

2.1 Introduction

The purpose of this study is to construct model using machine learning techniques for predicting

house sale price. For potential buyers, developers and other participants in real east market, it is

important to have an accurate prediction on the price of house (Frew, 2003). With a house price

prediction model, the information gap in the real estate market can be filled and improve the

efficiency of market (Calhoun, 2003). Hence, as a real estate analytics company, build up a powerful

model which can accurately predict price the house can effectively satisfy customers’ needs.

With a provided dataset which contains 80 features of house might affect its sales price, 5 models are

constructed in this study for analyse the relationship between features and sales price. Errors of

model were measured and compared, which will be explain in detail in later section of this report.

With the lowest error of prediction compare to houses real sale price, model ‘Stacking’ and

‘XGBoost’ are chose as two best model for predicting house sale price.

2.2 Data Processing and Exploratory Data Analysis

2.2.1 Data Processing

2.2.1.1 Data Understanding

The provided dataset stores comprehensive information on house price. This comma-separated

values (CSV) file has been divided into training and testing set, which contains 1,570 and 1,210

observations respectively. Both training and testing set have 80 independent variables, while

‘SalePrice’ is only provided in training set as a dependent variable for supervised learning process.

It can be seen from Table 1 in Appendix B that the number of variables in training set with dtype as

object, integer and float is 43, 29 and 9 respectively. The raw dataset is not ideal for statistical

analysis with a large number of object dtype columns, thus, data processing is needed to convert

original one into structured format for further analysis.

2.2.1.2 Missing Values

As shown in Table 1 in Appendix B, 24 variables in training set contain missing values (See Figure 2

in Appendix B), 9 of them are numerical data, others are object. ‘Pool QC’ is the variable with the

most missing values, followed by ‘Misc Feature’, ‘Alley’ and ‘Fence’ with more than 1,000 missing

values.

To fill the missing values, the variables are grouped together based on their dtype. Group 1 is for

numerical variables, which contains variables with dtype integer and float, while Group 2 includes

variables with dtype object. For numerical variables, missing values are filled with 0; while for

categorical variables, missing values are filled with the most frequent value (See Table 1 in

Appendix B). Same method is applied to both training and testing set.

2.2.2 Exploratory Data Analysis

2.2.2.1 Descriptive Summary

Descriptive summary is used to understand the statistic of the variables. 32 variables including the

response variable ‘SalePrice’ have positive skewness, which will be applied log transformation in

feature engineering phase.

2.2.2.2 Response Variable Visualization

Page 6 of 29

The response variable ‘SalePrice’ is ranging from 13,100 to 755,000, with the mean of

183,176.0522. As shown in Figure 4, the distribution of ‘SalePrice’ is right skewed, which means

data transformation should be performed in feature engineering.

Figure 4: Distribution of response variable

2.2.2.3 Predictors Visualization

Histogram is used to visualize the distribution of each numerical feature, shown in Figure 3 in

Appendix B. It is obvious that right skewness exists in predictors such as ‘Lot Area’, ‘Bsmf Unf SF

and ‘Gr Liv Area’, therefore, data transformation should be performed in feature engineering phase

to solve this problem.

Scatter plot is conducted to visualize the relationships between all numerical predictors and response

variable ‘SalePrice’, shown in Figure 4 in Appendix B. Visually, predictors like ‘Total Bsmt SF, ‘Gr

Liv Area’ and ‘Garage Area’ have strong positive effects on price, no obvious patterns shown in

other plots.

Heatmap is used to illustrate the correlation among predictors, shown in Figure 5. ‘Overall Qual’ has

the highest correlation with ‘SalePrice’, which is 0.7977, followed by ‘Gr Liv Area’, ‘Total Bsmt

SF’ and ‘Garage Cars’. There are 8 predictors having less than 0.05 correlation with ‘SalePrice’,

which can be considered removed in feature engineering phase. Among the predictors, ‘Garage Car’

and ‘Garage Area’ have a strong positive correlation of 0.9, which needs to be death with since it

would cause multicollinearity problem.

Page 7 of 29

Figure 5: Heatmap

Boxplot is conducted to show the effect of binary variables on the response variable. As shown in

Figure 6, pavel alley, pavel street and with central air would result in higher house price.

Figure 6: Boxplot of binary variables

2.3 Feature Engineering

After previous section, 80 features in training set will be used to fit model, while 43 of them are

object and 37 of them are numerical. Feature engineering is used to extract features from raw data to

improve data understanding and performance of model prediction. In this study, training set and

testing set will be applied with same methods of feature engineering, while there is no special

instruction.

2.3.1 Ordinal and Dummy Features

To fit data with model, ordinal and dummy features need to be encoded into numerical. Totally there

are 27 ordinal variables need to be encoded as listed in Table 1 in Appendix B. For example, ordinal

variable ‘Exter Cond’ have five categories including ‘Ex’, ‘Gd’, ‘TA’, ‘Fa’ and ‘Po’, in order to fit

‘Exter Cond’ with model, five categories are encoded into ‘4’, ‘3’, ‘2’, ‘1’ and ‘0’. In addition, 3

dummy variables also need to proceed with encoding. For dummy variable ‘Central Air’, ‘0’ and ‘1’

are used to encode category ‘N’ and ‘Y’ respectively. Details of variable encoding are listed in Table

1 in Appendix B.

Page 8 of 29

2.3.2 Categorical Features

In the dataset, 13 variables are considered as categorical features, which needed to be transformed

into numerical using dummy encoding. For n categories, n-1 dummy variable will be constructed to

fit model. The first step to encode categorical features is reducing categories. To avoid overfitting

problem and save computational cost resulting from by too many features, the number of created

dummy variables from categorical features should be as little as possible. Categorical feature ‘Sale

Condition’ will be taken as an example. The ‘Sale Condition’ have 6 condition including ‘Normal’,

‘Partial’, ‘Family’, ‘Alloca’, ‘AdjLand’ and ‘Abnormal’, condition ‘Normal’ has highest frequency

of 1,293, while other conditions sum up to have a frequency of 277 in training set. As ‘Normal’

condition takes more than 80 percent of entries in training set, the categories of variable ‘Sale

Condition’ are reduce to ‘Normal’ and a new generated type ‘Other’. ‘Other’ is the type of condition

including data entries of ‘Partial’, ‘Family’, ‘Alloca’, ‘AdjLand’ and ‘Abnormal’. Details of category

reducing process of all categorical features are listed in Table 1 in Appendix B. After reduce

category, new dummy variables are created from updated categorical features and used to fit model.

2.3.3 Log Transformation

As normal distributed data are more friendly for constructing model, the log transformation is used

to transformed skewed data to be normally distributed. As mentioned in EDA, 32 variables with

skewness greater than 0 including target variable ‘SalePrice’ are applied with log transformation.

List of log transformed variable are listed in Table 1 in Appendix B.

2.4 Methodology

2.4.1 Methodology Description

2.4.1.1 Decision Tree

Decision tree is a non-parametric model which includes classification tree and regression tree. In this

assignment, regression tree is used to predict the house price. Decision tree classifies a population

into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf

nodes. The algorithm is non-parametric and can efficiently deal with large, complicated dataset

without imposing a complicated parametric structure.

Decision tree performs well even if its assumptions are somewhat violated by the true model from

which the data were generated. However, decision trees can be unstable because small variations in

the data might result in a completely different tree being generated.

2.4.1.2 Random Forest

Random Forest is composed of multiple decision trees and there is no correlation between each tree.

Instead of using bootstrap method, Random Forest uses sampling without replacement method to

ensure randomness. In addition, each node is segmented using the best values from the randomly

selected subset of predictors on that node (Breiman, 2001). The randomness reduces the variance at

the cost of increasing of bias.

Random Forest is easy to implement and can generate relatively accurate prediction. However,

overfitting may occur in some noisy classification or regression problems.

2.4.1.3 XGBoost

XGBoost is short for ‘Extreme Gradient Boosting’ which applies the adoption of a gradient descent

structure to enhance the learning ability of weak learners. It implements machine learning algorithms

under the Gradient Boosting framework and improves the basic GBM framework through system

optimization and algorithm enhancement. XGboost adds regular terms to the cost function to control

Page 9 of 29

the complexity of the model. From the perspective of Bias-Variance Trade-off, the realization

reduces variance of the model, and prevents overfitting.

XGBoost is an accurate and flexible method to make predictions. It can also deal with samples with

missing values by using the sparse perception algorithm and automatically learning its splitting

direction. However, it’s not easy to optimize due to the large number of turning parameters. In

addition, the predicting process is considered as ‘black-box’ which means it’s hard to interpret the

result.

2.4.1.4 AdaBoosting

Full name of AdaBoosting is Adaptive Boosting. It uses linear combination of weak classifier to

construct strong classifier. Samples and classifiers have different ways of allocating the weights. At

the beginning of training, the weights of all samples are equal, and the weight of samples

misclassified by the previous weak classifier will be increased in the next turn. Different from the

weights of samples, the weak classifier with high accuracy will have a larger weight.

AdaBoosting has relatively accurate result and it can avoid the overfitting problems. However, this

model it’s sensitive to outliers. As the training samples are weighted, higher weights may be given to

the outliers in the training data which will affect the accuracy.

2.4.2.5 Staking

In stacking method, there are normally 2 layers. In the first layer, various strong classifiers can be

used to make predictions. At the second layer, a weak classifier is used to form a new set of

prediction based on the results generated in the first layer. Models used in the first layer are called

‘base model’ and model in the second layer is ‘meta model’.

2.4.3 Model Implementation

Scikit-learn in Python is used to implement above 5 models. All features are used in the first training

process, and to avoid the overfitting problems, feather engineering is re-done according to the feature

importance.

Since most advanced models are hard to interpret and there are inconsistency issues when using the

feature_importance attribute in advanced models, a new method which is SHAP is introduced to

calculate the importance of features and interpret the model in this assignment. SHAP uses the

method of game theory, and the value obtained by this method is the average marginal contribution

of eigenvalues in all possible alliances. It can also solve ‘black-box’ issue and interpret the model

clearly.

2.4.3.1 XGBooost

Scikit-learn has XGBoost model which is used in this assignment. Tuning parameters are set as

below to fine the best ones:

1. tuning_parameters = {
2. 'learning_rate': [0.01, 0.05, 0.1],
3. 'gamma' : [0.1,0.2],
4. 'n_estimators' : [0,500],
5. 'max_depth' : [5,6],
6. 'subsample' : [0.5,0.6,0.8,0.9, 1.0],
7. }

After model training, it can be found that the best parameters are: learning rate = 0.05, subsample =

0.6, n_estimators = 500 and the max depth = 5. The RMSE is 0.1304.

2.4.3.2 Stacking

Page 10 of 29

In Stacking model, 4 advanced models which are Decision Tree, Random Forest, XGBoost and

AdaBoost are used as the base model and Lasso is used as the meta model since it can avoid

overfitting problem.

2.5 Model Validation and Evaluation

2.5.1 Model Validation

To find the best parameters, GridSearch is used in this assignment which loops through all the

candidate parameters, and try every possibility to find the best parameters

5-folds validation is used to validate the model. The data was divided into 5 subsets. Each subset is

tested once and the rest are used as training sets. Cross validation is repeated 5 times, and the

average recognition accuracy of cross validation 5 times is taken as the result.

2.5.2 Measure Metric

The Root-Mean-Squared-Error (RMSE) is used to evaluate the performance of models. Formula of

RMSE is
n

yy
RMSE i i =

−
=

n

1

^
2)(

. The RMSE results of each model is shown in Table 1.

Table 1: Model performance and kaggle result

Model Decision

Tree

Random

Forest

XGBoost AdaBoost Stacking

RMSE 0.1730 0.1485 0.1304 0.1649 0.0537

Kaggle

Result

36563.2140 27060.1708 20329.3315 28915.6272 22827.6266

According to the table above, it’s clear that Stacking model has the lowest RMSE score which is

only 0.0537. The rest of models have relatively similar RMSE and among them, XGBoost performs

the best while Decision Tree is relatively less accurate. Thus, XGBoost and Stacking are selected as

the final two model.

2.5.3 Model Interpretation and Insights

Mean SHAP value sort absolute values of the feature importance in descending order. From Figure 7,

it can be seen that Decisions Tree, Random Forest and XGBoost indicates that there are 2 types of

features play important role in house pricing.

Page 11 of 29

Figure 7: Feature importance for Decision Tree, Random Forest and XGBoost

The first one is related with the area, especially the size of above grade (ground) living, lot, basement

and garage. The second feature is quality-related including the exterior quality, overall quality of the

material used to build the house, and kitchen quality.

Figure 8: SHAP value impact on model output

SHAP value can also present how the feature will impact the house pricing. Take Figure 8 as an

Page 12 of 29

example, which is the feature importance generated by XGBoost, it’s clear that almost all the

important features have positive influence on house pricing. For example, in this model, size of

above living area is the most import feature, and the bigger the size is, the higher the price will be.

Only one feature among the important features has negatively impact on the price which is Sale

Condition_Other. Since the feature is the result of getting dummy, the value is 0 or 1 which means

other sale condition will decrease the house price.

What’s more, some features that most people may care doesn’t have significant importance in

XGBoost model. For example, the style of the house which refers how many floors does this house

have, doesn’t affect the price greatly.

2.6 Conclusion

In conclusion, this study is aim to predict house sale price, with many features can affect the sale

price, such as rates of the overall material and finish of the house, above ground living area, year

built and others.

With the lowest error for prediction, ‘XGBoost’ and ‘Stacking’ model have been choosing as two

best model. As suggesting by ‘XGBoost’ model and other models, there are several types of features

contribute a lot for house sales price, such as area related factor such as the size of above grade

(ground) living, and quality related factor such as exterior quality. Outlining those important features

and help buyers and sellers of house to set their budgets price in an efficient way, and with the

‘XGBoost’ model, the sale price of house can be effectively predicted.

Nevertheless, there are still some limitations and potential improvement exist in this study. Firstly, as

mentioned in the data processing section, the raw data contains a lot of missing values. Although the

missing values have been filled with reasonable, it can still cause problem in accuracy compare to

real content. If the data is with good quality and no missing value, the accuracy of the prediction

should be more accurate. Secondly, for the model constructed in this study, the performance of

model is not perfect for predicting sales price, further study and research is needed to be more

accurate. Lastly, the sales price of house might be affected by factors not listed in the dataset for

training model. Unexpected event happened can also affect the sale price of house, such as pandemic

of Covid-19. To improve the accuracy of prediction, the time horizon of dataset provided should be

considered.

Page 13 of 29

3. TASK C

3.1 Data Processing

3.1.1 Load the Data

pd.read_csv() is used to load the given CSV file. There are 4,000 rows and 12 columns in the data.

The last column is defined as the response variable ‘quality’ while the rest 11 columns are features.

1. wine_data = pd.read_csv('Wine_2020.csv')
2. quality = wine_data.iloc[:,-1]
3. features = wine_data.iloc[:,:-1]

3.1.2 Scaling

The observations of each feature and target are scaled by dividing maximum of each feature and

target respectively. ‘x’ regards to the features which is an array with 4,000 rows and 11 columns; ‘y’

is the target which is reshaped as an array with 4,000 rows and 1 column.

1. features_scaled = features.div(features.max())
2. quality_scaled = quality.div(quality.max())
3. x = features_scaled
4. y = quality_scaled.values.reshape(-1,1)

3.2 Build a 3-Layer Neural Network

3.2.1 Initialize Hyper Parameters

A 3-layer neural network will be built with one input layer with 11 neurons, one hidden layer with 10

neurons and one output layer with 1 neuron (Figure 9). 𝑊(1) is the weight with 11 rows (features)

and 10 columns (neurons in hidden layer), connecting input layer and hidden layer. 𝑊(2) is the

weight with 10 rows (neurons in hidden layer) and 1 column (neuron in output layer), connecting

hidden layer and output layer. 𝑊(1) and 𝑊(2) are randomly initialized with the random seed of 0.

The learning rate of gradient descent is initialized as 0.0001.

Figure 9: 3-layer neural network

1. input_layer_size = 11
2. hidden_layer_size = 10

Page 14 of 29

3. output_layer_size = 1
4.
5. np.random.seed(0)
6. W1 = np.random.randn(input_layer_size, hidden_layer_size)
7. W2 = np.random.randn(hidden_layer_size, output_layer_size)
8.
9. alpha = 0.0001

3.2.2 Define Functions

The sigmoid activation function and the loss function which is the Sum of Square Error (SSE) are

defined as below. The derivative of the sigmoid activation function is also shown below, which will

be used in backpropagation.

𝜎(𝑧) =
1

1 + 𝑒−𝑧

𝜎′(𝑧) = 𝜎(𝑧) ∗ (1 − 𝜎(𝑧))

𝐿(𝑊) =
1

2
∑(𝑓(𝑥𝑛, 𝑊) − 𝑡𝑛)2

𝑁

𝑛=1

1. def sigmoid(z):
2. return (1/(1 + np.exp(-z)))
3.
4. def sse(z):
5. return np.sum(np.power(z,2))/2

3.2.3 Train a 3-Layer Nerual Network

Iterate the following procedures 10,000 times. For each iteration, forward propagation,

backpropagation, gradient descent are implemented and the loss is updated (Code 2 in Appendix C).

3.2.3.1 Forward Propagation

Propagation forward through the network to generate the output values. 𝑎(1) is the exmaple matrix

with 4,000 rows (examples) and 11 columns (features). 𝑊(1) is the weight with 11 rows (features)

and 10 columns (neurons in hidden layer), connecting input layer and hidden layer. Multiplying

𝑎(1)and 𝑊(1) will get 𝑍(2), the input of neuron (no activation) with 4,000 rows (examples) and 10

columns (neurons in hidden layer). 𝑍(2) is then activated by sigmoid function to get 𝑎(2). 𝑊(2) is the

weight with 10 rows (neurons in hidden layer) and 1 column (neuron in output layer), connecting

hidden layer and output layer. Multiplying 𝑎(2) and 𝑊(2) will get 𝑍(3) , the input of neuron (no

activation) with 4,000 rows (examples) and 1 column (neuron in output layer). 𝑍(3) is then activated

by sigmoid function to get 𝑎(3), which is the output value of a 3-layer neural network.

𝑎(1) = 𝑋

𝑍(2) = 𝑎(1)𝑊(1)

𝑎(2) = 𝜎(𝑍(2))

𝑍(3) = 𝑎(2)𝑊(2)

𝑓(𝑋, 𝑊) = 𝑎(3) = 𝜎(𝑍(3))

1. a_1 = x
2. z_2 = np.dot(a_1,W1)
3. a_2 = sigmoid(z_2)
4. z_3 = np.dot(a_2,W2)

Page 15 of 29

5. a_3 = sigmoid(z_3)

3.2.3.2 Calculate Loss

The loss is calculated using the predict values subtracted by observed values.

𝐿𝑜𝑠𝑠 = 𝑓(𝑋, 𝑊) − 𝑡

1. loss = a_3 - y

3.2.3.3 Backpropagation

Propagation of the output activations back through the network to generate the deltas 𝛿 of all output

and hidden neurons.

Step 1:

𝜎(𝑍(3)) is 𝑍(3) after activation which is 𝑎(3) . With the derivative chain rule 𝜎′(𝑧) = 𝜎(𝑧) ∗ (1 −
𝜎(𝑧)), the weight’s output 𝛿(3) is caculated as the matrix element wise product of 𝐿𝑜𝑠𝑠 and 𝜎′(𝑍(3)).

The weight’s output 𝛿(3) and the transpose of input activation 𝑎(2) are multiplied to find the gradient

of the weight
𝜕𝐿(𝑊)

𝜕𝑊(2) . The weight’s output 𝛿(3) has 4,000 rows (examples) and 1 column (neuron in

output layer), while the gradient
𝜕𝐿(𝑊)

𝜕𝑊(2) has 10 rows (neurons in hidden layer) and 1 column (neuron

in output layer).

𝛿(3) = 𝐿𝑜𝑠𝑠.∗ 𝜎′(𝑍(3))

𝜕𝐿(𝑊)

𝜕𝑊(2)
= (𝑎(2))𝑇𝛿(3)

1. d_3 = loss * a_3 * (1 - a_3)
2. g_2 = np.dot(a_2.T,d_3)

Step 2:

𝜎(𝑍(2)) is 𝑍(2) after activation which is 𝑎(2) . With the derivative chain rule 𝜎′(𝑧) = 𝜎(𝑧) ∗ (1 −
𝜎(𝑧)), the weight’s output 𝛿(2) is caculated as the matrix element wise product of (𝛿(3)(𝑊(2))𝑇) and

𝜎′(𝑍(2)). The weight’s output 𝛿(2) and the input 𝑋𝑇 are multiplied to find the gradient of the weight
𝜕𝐿(𝑊)

𝜕𝑊(1) . The weight’s output 𝛿(2) has 4,000 rows (examples) and 10 columns (neurons in hidden

layer), while the gradient
𝜕𝐿(𝑊)

𝜕𝑊(1) has 11 rows (features) and 10 columns (neurons in hidden layer).

𝛿(2) = (𝛿(3)(𝑊(2))𝑇).∗ 𝜎′(𝑍(2))

𝜕𝐿(𝑊)

𝜕𝑊(1)
= 𝑋𝑇𝛿(2)

1. loss_2 = d_3 * W2.T
2. d_2 = loss_2 * a_2 * (1 - a_2)
3. g_1 = np.dot(x.T,d_2)

3.2.3.4 Gradient Descent

A ratio (learning rate) of the weights’ gradient is subtracted from the weights to update the new

weights.

𝑊(1) ≔ 𝑊(1) − 𝛼
𝜕𝐿(𝑊)

𝜕𝑊(1)

Page 16 of 29

𝑊(2) ≔ 𝑊(2) − 𝛼
𝜕𝐿(𝑊)

𝜕𝑊(2)

1. W1 = W1 - (alpha * g_1)
2. W2 = W2 - (alpha * g_2)

3.2.3.5 Incorporate the Updated Weights

The updated weights are then incorporated into forward propagation and the loss is calculated and

appended to a loss list.

1. a_1 = x
2. z_2 = np.dot(a_1,W1)
3. a_2 = sigmoid(z_2)
4. z_3 = np.dot(a_2,W2)
5. a_3 = sigmoid(z_3)
6. loss = a_3 - y
7. loss_list.append(sse(loss))

3.3 Neural Network Diagnosis

3.3.1 Loss Plot and Final Loss

As shown in Figure 10, as the number of iteration increasing, the loss drops rapidly at the beginning

when the number of iterations is small and decreases slowly when the number of iterations is large.

But the loss hasn’t totally been converged yet, if the number of iteration keeps increasing, the loss

will turn to converge. The final estimated loss is 8.7248 after iterating 1,000 times.

Figure 10: Loss function with each iteration

3.3.2 Final Estimated Weights

The final estimated weights are shown below.

1. W1 =
2. [[1.56166955 0.78966505 0.12458661 2.30770085 1.93746203 -0.87709126
3. 1.41698331 -0.30327564 0.04623755 0.34773496]
4. [-0.21818819 0.99547501 1.50269693 -0.24824729 0.5372052 0.21662432
5. 1.13571222 -0.09947502 0.19286905 -1.13518417]
6. [-2.62894952 0.77872664 0.46647456 -0.66957941 2.31902182 -1.39992322
7. 0.26672385 -0.28015774 1.63836509 1.35376455]
8. [0.05029951 0.26956458 -0.7227979 -2.05801332 -0.31864967 0.13097791
9. 1.16147309 1.22403124 -0.41195902 -0.37848528]
10. [-1.43437235 -1.59408771 -1.31144574 1.59725856 -0.39171407 -0.50716884
11. -1.33454628 0.80234192 -1.66230645 -0.44248044]
12. [-0.76705126 0.88797384 -1.32294823 -0.79247064 0.01091677 0.58766245
13. 0.57264241 0.11991656 -0.41035697 -0.40462157]

Page 17 of 29

14. [-0.81920115 -0.14623516 -1.10767468 -1.61509959 0.25604096 -0.35140463
15. -1.35092399 0.37750791 -0.81921975 -0.07454705]
16. [-0.05524363 -0.37346421 1.7351261 -1.79021133 0.63491497 -0.81453124
17. -1.11362811 -0.51967548 -0.40904194 -0.42989148]
18. [-1.65496188 0.95663918 0.1665545 -1.70589376 1.65037434 1.90323735
19. 1.39126703 -0.25844477 -1.02873166 0.80488766]
20. [-0.72005874 1.18159763 0.05794214 0.80721336 0.47450998 0.70352546
21. 0.1173126 1.73849575 0.153675 0.20076373]
22. [1.34940426 -1.43565464 -1.26776123 0.68596714 -1.00570253 1.90865003
23. -0.35139933 -0.77556952 1.91822615 1.19637698]]
24.
25. W2 =
26. [[0.73704807]
27. [1.26593371]
28. [-2.2746167]
29. [1.11868777]
30. [-0.66899316]
31. [0.43559584]
32. [1.05454494]
33. [-0.32888345]
34. [0.17833581]
35. [0.95878048]]

3.3.3 Predict Values and Observed Values

As shown in Figure 11, there’s a strong relationship between the predict target values and observed

target values. As the predict target values increasing, observed target values would increase, which

means this 3-layer neural network predicts well in its performance.

Figure 11: Scatter plot of observed values and predict values

3.4 Optimisation

To increase the predicting accuracy of neural network, different learning rates, number of neurons in

the hidden layers and number of iteration need to be tested to find a lower SSE. Instead fixed

learning rate alpha to 0.0001, a list of alpha including 0.1, 0.01, 0.001, 0.0001 and 0.00001 is applied

to loop. In addition, number neurons in hidden layer are also change to a list including 8, 9, 10, 11

and 12. For the number of iteration, a stopping criteria is included in the loop to reduce overfitting

and improve the generalization of neural network. The stopping criterial is listed below.

1. counter = 0
2. min_delta = 0.00005
3. patience = 100
4. best_score = None

Page 18 of 29

The ‘min_delta’ is used to critique the minimal change in loss should be at lease 0.005%. After the

change of iteration is smaller than 0.005%, the stopping criterial will use ‘patience’ to further test

100 events, make sure no events result in a minimal 0.005% change. The result of iteration with a list

of alpha and hidden layer with stopping criteria is listed below.

1. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 107
2. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 107
3. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 124
4. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 100
5. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 3252
6. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 100
7. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 3696
8. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 102
9. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 4422
10. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 3213
11. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 2915
12. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 3430
13. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 3301
14. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 4138
15. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 8300
16. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 6098
17. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 867
18. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 6908
19. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 5534
20. Early Stopped: counter = 100, min_delta = 0.000050, iteration = 2983
21. Best parameters are: Alpha = 0.010000, hidden_layer_size = 8
22. Corresponding loss: 5.780460

As highlighted in above code, the maximal number of iterations only reach 8,300, hence, there is no

need to increase the number of iteration in the algorithm. Besides, the estimated loss of neurons

network has been reducing to 5.7805 with the learning rate alpha 0.01 and the number of neurons in

hidden layer of 8. Hence, to optimise the prediction accuracy of this model, alpha should be set to

0.01 and with number of neurons in hidden layer set to 8.

Page 19 of 29

4. Reference

Breiman, L 2001, ‘Random Forests.(Author abstract)’ Machine Learning, vol. 45, no. 1, pp. 5–32,

doi: 10.1023/A:1010933404324.

 Calhoun, C 2003, ‘Property valuation models and house price indexes for the Provinces of Thailand:

1992-2000’ Housing Finance International, vol. 17, no. 3, pp. 31–41, Retrieved from

http://search.proquest.com/docview/216210879/.

Frew, J 2003, ‘Estimating the value of apartment buildings’ Journal of Real Estate Research, vol.

25, no. 1, pp. 77–86, Retrieved from http://search.proquest.com/docview/38456613/.

Page 20 of 29

Appendix A (Task A)

Figure 1: Scatter plot of numeric predictors with the response variable

1. # When the likelihood doesn't change, break the iteration and return W
2. if (abs(loss_total[-1]-loss)) < 0.00001:
3. break
4. else:
5. # save all the loss function values at each step
6. loss_total[i]= loss

Code 1: Gradient descent

Page 21 of 29

Appendix B (Task B)

Figure 2: Missing values in training set

Page 22 of 29

Figure 3: Distribution of numerical variables

Page 23 of 29

Page 24 of 29

Figure 4: Scatter plot of numeric predictors with the response variable

Page 25 of 29

Figure 5: Sale price vs land slope

Figure 6: Sale price vs land contour

Figure 7: Sale price vs overall quality

Page 26 of 29

Figure 8: Sale price vs garage cars

Figure 9: Sale price vs fireplaces

Page 27 of 29

Table 1: Data processing and feature engineering details

Index Variable Null Count Dtype Data Type Deal with Null Count Feature Engineering

1 Train_ID 0 int64 Numerical 0 NAN

2 MS SubClass 0 int64 Numerical 0 Log Transformation

3 MS Zoning 0 object Categorical Mode Only keep "Residential" and "Others"

4 Lot Frontage 264 float64 Numerical 0 NAN

5 Lot Area 0 int64 Numerical 0 Log Transformation

6 Street 0 object Binary Mode 'Grvl':0, 'Pave':1

7 Alley 1472 object Binary Mode 'Grvl':0, 'Pave':1

8 Lot Shape 0 object Ordinal Mode 'IR3':3,'IR2':2,'IR1':1,'Reg':0

9 Land Contour 0 object Ordinal Mode 'Low':3,'HLS':2,'Bnk':1,'Lvl':0

10 Utilities 0 object Ordinal Mode 'NoSeWa':2,'NoSewr':1,'AllPub':0

11 Lot Config 0 object Categorical Mode Only keep 'Inside','Corner' and other

12 Land Slope 0 object Ordinal Mode 'Sev':2,'Mod':1,'Gtl':0

13 Neighborhood 0 object Categorical Mode Only keep'CollgCr','Edwards','NAmes','OldTown','other'

14 Condition 1 0 object Categorical Mode Only keep 'Norm', and other

15 Condition 2 0 object Categorical Mode Only keep 'Norm', and other

16 Bldg Type 0 object Ordinal Mode 'Twnhs':4,'TwnhsE':3,'Duplex':2,'2fmCon':1,'1Fam':0

17 House Style 0 object Ordinal Mode SLvl':7,'SFoyer':6,'2.5Unf':5,'2.5Fin':4,'2Story':3,'1.5Unf':2,'1.5Fin':1,'1Story':0

18 Overall Qual 0 int64 Numerical 0 Log Transformation

19 Overall Cond 0 int64 Numerical 0 Log Transformation

20 Year Built 0 int64 Numerical 0 NAN

21 Year Remod/Add 0 int64 Numerical 0 NAN

22 Roof Style 0 object Categorical Mode Only keep 'Gable','Hip' and other

23 Roof Matl 0 object Categorical Mode Only keep 'CompShg'and other

24 Exterior 1st 0 object Categorical Mode Only keep'HdBoard','MetalSd','VinylSd','Wd Sdng','other'

25 Exterior 2nd 0 object Categorical Mode Only keep'HdBoard','MetalSd','VinylSd','Wd Sdng','other'

26 Mas Vnr Type 15 object Ordinal Mode 'BrkCmn':3,'BrkFace':2,'Stone':1,'None':0

27 Mas Vnr Area 15 float64 Numerical 0 Log Transformation

28 Exter Qual 0 object Ordinal Mode 'Ex':3,'Gd':2,'TA':1,'Fa':0

29 Exter Cond 0 object Ordinal Mode 'Ex':4,'Gd':3,'TA':2,'Fa':1,'Po':0

30 Foundation 0 object Ordinal Mode 'BrkTil':5,'CBlock':4,'PConc':3,'Slab':2,'Stone':1,'Wood':0

31 Bsmt Qual 42 object Ordinal Mode 'Ex':4,'Gd':3,'TA':2,'Fa':1,'Po':0

32 Bsmt Cond 42 object Ordinal Mode 'Ex':4,'Gd':3,'TA':2,'Fa':1,'Po':0

33 Bsmt Exposure 44 object Ordinal Mode 'Gd':3,'Av':2,'Mn':1,'No':0

34 BsmtFin Type 1 42 object Ordinal Mode 'GLQ':5,'ALQ':4,'BLQ':3,'Rec':2,'LwQ':1,'Unf':0

35 BsmtFin SF 1 1 float64 Numerical 0 Log Transformation

36 BsmtFin Type 2 42 object Ordinal Mode 'GLQ':5,'ALQ':4,'BLQ':3,'Rec':2,'LwQ':1,'Unf':0

37 BsmtFin SF 2 1 float64 Numerical 0 Log Transformation

38 Bsmt Unf SF 1 float64 Numerical 0 Log Transformation

39 Total Bsmt SF 1 float64 Numerical 0 Log Transformation

40 Heating 0 object Categorical Mode Only keep 'GasA'and other

41 Heating QC 0 object Ordinal Mode 'Ex':4,'Gd':3,'TA':2,'Fa':1,'Po':0

42 Central Air 0 object Binary Mode 'N':0, 'Y':1

43 Electrical 0 object Ordinal Mode 'Mix':4,'FuseP':3,'FuseF':2,'FuseA':1,'SBrkr':0

44 1st Flr SF 0 int64 Numerical 0 Log Transformation

45 2nd Flr SF 0 int64 Numerical 0 Log Transformation

46 Low Qual Fin SF 0 int64 Numerical 0 Log Transformation

47 Gr Liv Area 0 int64 Numerical 0 Log Transformation

48 Bsmt Full Bath 1 float64 Numerical 0 Log Transformation

49 Bsmt Half Bath 1 float64 Numerical 0 Log Transformation

50 Full Bath 0 int64 Numerical 0 Log Transformation

51 Half Bath 0 int64 Numerical 0 Log Transformation

52 Bedroom AbvGr 0 int64 Numerical 0 Log Transformation

53 Kitchen AbvGr 0 int64 Numerical 0 Log Transformation

54 Kitchen Qual 0 object Ordinal Mode Ex':4,'Gd':3,'TA':2,'Fa':1,'Po':0

55 TotRms AbvGrd 0 int64 Numerical 0 Log Transformation

56 Functional 0 object Ordinal Mode 'Typ':7,'Min1':6,'Min2':5,'Mod':4,'Maj1':3,'Maj2':2,'Sev':1,'Sal':0

57 Fireplaces 0 int64 Numerical 0 Log Transformation

58 Fireplace Qu 749 object Ordinal Mode 'Ex':4,'Gd':3,'TA':2,'Fa':1,'Po':0

59 Garage Type 82 object Ordinal Mode '2Types':5,'Attchd':4,'Basment':3,'BuiltIn':2,'CarPort':1,'Detchd':0

60 Garage Yr Blt 83 float64 Numerical 0 NAN

61 Garage Finish 83 object Ordinal Mode 'Fin':2,'RFn':1,'Unf':0

62 Garage Cars 0 int64 Numerical 0 NAN

63 Garage Area 0 int64 Numerical 0 Log Transformation

64 Garage Qual 83 object Ordinal Mode Ex':4,'Gd':3,'TA':2,'Fa':1,'Po':0

65 Garage Cond 83 object Ordinal Mode 'Ex':4,'Gd':3,'TA':2,'Fa':1,'Po':0

66 Paved Drive 0 object Ordinal Mode 'Y':2,'P':1,'N':0

67 Wood Deck SF 0 int64 Numerical 0 Log Transformation

68 Open Porch SF 0 int64 Numerical 0 Log Transformation

69 Enclosed Porch 0 int64 Numerical 0 Log Transformation

70 3Ssn Porch 0 int64 Numerical 0 Log Transformation

71 Screen Porch 0 int64 Numerical 0 Log Transformation

72 Pool Area 0 int64 Numerical 0 Log Transformation

73 Pool QC 1562 object Ordinal Mode 'Ex':3,'Gd':2,'TA':1,'Fa':0

74 Fence 1267 object Ordinal Mode 'GdPrv':3,'MnPrv':2,'GdWo':1,'MnWw':0

75 Misc Feature 1514 object Categorical Mode Only keep 'Shed'and other

76 Misc Val 0 int64 Numerical 0 Log Transformation

77 Mo Sold 0 int64 Numerical 0 Log Transformation

78 Yr Sold 0 int64 Numerical 0 Log Transformation

79 Sale Type 0 object Categorical Mode Only keep 'WD', 'New' and other

80 Sale Condition 0 object Categorical Mode Only keep 'Normal'and other

81 SalePrice 0 int64 Numerical 0 Log Transformation

Page 28 of 29

Appendix C (Task C)

1. input_layer_size = 11
2. hidden_layer_size = 10
3. output_layer_size = 1
4.
5. np.random.seed(0)
6. W1 = np.random.randn(input_layer_size, hidden_layer_size)
7. W2 = np.random.randn(hidden_layer_size, output_layer_size)
8.
9. alpha = 0.0001
10.
11. iterations = 10000
12. loss_list = []
13.
14. # Forward propagation
15. for i in range(iterations):
16. a_1 = x
17. z_2 = np.dot(a_1,W1)
18. a_2 = sigmoid(z_2)
19. z_3 = np.dot(a_2,W2)
20. a_3 = sigmoid(z_3)
21. loss = a_3 - y
22.
23. # Backpropagation
24. d_3 = loss * a_3 * (1 - a_3)
25. g_2 = np.dot(a_2.T,d_3)
26.
27. loss_2 = d_3 * W2.T
28. d_2 = loss_2 * a_2 * (1 - a_2)
29. g_1 = np.dot(x.T,d_2)
30.
31. # Gradient decent
32. W1 = W1 - (alpha * g_1)
33. W2 = W2 - (alpha * g_2)
34.
35. # Loss after iteration
36. a_1 = x
37. z_2 = np.dot(a_1,W1)
38. a_2 = sigmoid(z_2)
39. z_3 = np.dot(a_2,W2)
40. a_3 = sigmoid(z_3)
41. loss = a_3 - y
42.
43. loss_list.append(sse(loss))

Code 2: Train a 3-layer neural network

